Enhancing Technologies In Adaptive Reuse: AI Supported Systems
DOI:
https://doi.org/10.53463/ecopers.20240278Keywords:
Adaptive Reuse, Artificial Intelligence, Machine Learning, Industrial Heritage, Sustainable Urban DevelopmentAbstract
The adaptive reuse of historical and industrial buildings is pivotal for sustainable urban development, preserving cultural heritage, minimizing environmental impact, and addressing contemporary needs. This paper examines how advanced technologies such as artificial intelligence (AI) and machine learning (ML) can be integrated into the adaptive reuse process. It emphasizes their ability to improve decision-making, refine design solutions, and support sustainable management. AI and ML offer innovative solutions for identifying appropriate uses for repurposed buildings, optimizing structural adjustments, and ensuring alignment with sustainability objectives. The findings highlight the potential of these technologies to bring about significant transformations in architecture and construction, advocating for their conscientious and ethical implementation to strike a balance between tradition and innovation.
References
Abd El- Maksoud, N., & Ahmed, E. (2024). Artificial Intelligence Applications in Green Architecture. Fayoum University Journal of Engineering, 7(2), 317–337. Retrieved from https://doi.org/10.21608/fuje.2024.345049
Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaifi, J., … Varoquaux, G. (2014). Machine learning for neuroimaging with scikit-learn. Frontiers in Neuroinformatics, 8. Retrieved from https://doi.org/10.3389/fninf.2014.00014
Ahunbay, Z. (2010). Tarihi Çevre Koruma ve Restorasyon. İstanbul: Yem Yayınları.
Aigwi, I. E., Egbelakin, T., Ingham, J., Phipps, R., Rotimi, J., & Filippova, O. (2019). A performance-based framework to prioritise underutilised historical buildings for adaptive reuse interventions in New Zealand. Sustainable Cities and Society, 48, 101547. Retrieved 1 December 2023 from https://doi.org/10.1016/J.SCS.2019.101547
Altınoluk, Ü. (1998). Binaların yeniden kullanımı: program, tasarım, uygulama, kullanım (Vol. 1). Yapı-Endüstri Merkezi Yayınları.
Baduge, S. K., Thilakarathna, S., Perera, J. S., Arashpour, M., Sharafi, P., Teodosio, B., … Mendis, P. (2022). Artificial intelligence and smart vision for building and construction 4.0: Machine and deep learning methods and applications. Automation in Construction, 141, 104440. Retrieved from https://doi.org/10.1016/j.autcon.2022.104440
Balta, M. Ö. (2022). An AHP-Based Multi-Criteria Model for Adaptive Reuse of Heritage Buildings. Geographies, Planning And Tourism Studios, 2(1), 40–45. Retrieved from https://doi.org/10.5505/gpts.2022.36854
Biehler, R., Fleischer, Y., Budde, L., Frischemeier, D., Gerstenberger, D., Podworny, S., & Schulte, C. (2020). Data science education in secondary schools: teaching and learning decision trees with CODAP and jupyter notebooks as an example of integrating machine learning into statistics education. In New Skills in the changing World of Statistics Education IASE Roundtable Conference. International Association for Statistical Education. Retrieved from https://doi.org/10.52041/SRAP.20304
Bogner, J., Verdecchia, R., & Gerostathopoulos, I. (2021). Characterizing Technical Debt and Antipatterns in AI-Based Systems: A Systematic Mapping Study. Proceedings - 2021 IEEE/ACM International Conference on Technical Debt, TechDebt 2021, 64–73. Retrieved 5 December 2023 from https://doi.org/10.1109/TechDebt52882.2021.00016
Bredesen-Aa, B. A., & Rehmsmeier, M. (2022). Gnocis: An integrated system for interactive and reproducible analysis and modelling of cis-regulatory elements in Python 3. PLOS ONE, 17(9), e0274338. Retrieved from https://doi.org/10.1371/journal.pone.0274338
Bullen, P. A., & Love, P. E. D. (2009). Residential regeneration and adaptive reuse: learning from the experiences of Los Angeles. Structural Survey, 27(5), 351–360. Retrieved from https://doi.org/10.1108/02630800911002611
Bullen, P. A., & Love, P. E. D. (2011). Adaptive reuse of heritage buildings. Structural Survey, 29(5), 411–421. Retrieved 1 December 2023 from https://doi.org/10.1108/02630801111182439/FULL/XML
Bullen, P., & Love, P. (2011). A new future for the past: a model for adaptive reuse decision‐making. Built Environment Project and Asset Management, 1(1), 32–44. Retrieved from https://doi.org/10.1108/20441241111143768
Dai, A. (2023). Co-creation: Space Reconfiguration by Architect and Agent Simulation Based Machine Learning (pp. 304–313). Retrieved from https://doi.org/10.1007/978-981-19-8637-6_27
Duan, Q., Qi, L., Cao, R., & Si, P. (2022). Research on Sustainable Reuse of Urban Ruins Based on Artificial Intelligence Technology: A Study of Guangzhou. Sustainability, 14(22), 14812. Retrieved from https://doi.org/10.3390/su142214812
Eren, Ş. G. (2021). An Analysis on Urbanism and Urban Growth Concepts in the Context of Sustainability. In Architectural Sciences and Sustainability (Vol. 2, pp. 197–264). Iksad .
Farjami, E., & Türker, Ö. O. (2021). The Extraction of Prerequisite Criteria for Environmentally Certified Adaptive Reuse of Heritage Buildings. Sustainability, 13(6), 3536. Retrieved from https://doi.org/10.3390/su13063536
Farooq, D. S., & Qureshi, A. K. (2020). Sustainable Viability for Restoration and Adaptive Reuse of Sikh Era Havelis in Lahore, Pakistan. Sir Syed University Research Journal of Engineering & Technology, 10(2). Retrieved from https://doi.org/10.33317/ssurj.162
Fufa, S. M., Flyen, C., & Flyen, A.-C. (2021). How Can Existing Buildings with Historic Values Contribute to Achieving Emission Reduction Ambitions? Applied Sciences, 11(13), 5978. Retrieved from https://doi.org/10.3390/app11135978
Gewirtzman, D. F. (2017). Adaptive Reuse Architecture Documentation and Analysis. Journal of Architectural Engineering Technology, 05(03). Retrieved from https://doi.org/10.4172/2168-9717.1000172
Greenspan, H., Van Ginneken, B., & Summers, R. M. (2016). Guest Editorial Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique. IEEE Transactions on Medical Imaging, 35(5), 1153–1159. Retrieved 5 December 2023 from https://doi.org/10.1109/TMI.2016.2553401
Günçe, K., & Misirlisoy, D. (2019). Assessment of Adaptive Reuse Practices through User Experiences: Traditional Houses in the Walled City of Nicosia. Sustainability 2019, Vol. 11, Page 540, 11(2), 540. Retrieved 15 December 2023 from https://doi.org/10.3390/SU11020540
Günçe, K., & Mısırlısoy, D. (2015). Questioning the Adaptive Reuse of Industrial Heritage and Its Interventions in the Context of Sustainability. Sociology Study, 5(9). Retrieved from https://doi.org/10.17265/2159-5526/2015.09.004
Hassanain, M. A., & Hamida, M. B. (2023). AEC/FM performance in adaptive reuse projects: investigation of challenges and development of practical guidelines. Facilities, 41(7/8), 477–497. Retrieved from https://doi.org/10.1108/F-04-2022-0053
Hegazy, M., & Saleh, A. (2023). Evolution of AI role in architectural design: between parametric exploration and machine hallucination. MSA Engineering Journal, 2(2), 262–288. Retrieved from https://doi.org/10.21608/msaeng.2023.291873
Kaşlı, B. (2008). İstanbul’da Yeniden İşlevlendirilen Korumaya Değer Endüstri Yapıları Ve İç Mekan Müdahaleleri: Santralistanbul Örneği. İtü, İstanbul.
Kersting, J. M. (2006). Integratıng Past And Present: The Story Of A Buıldıng Through Adaptıve Reuse. Retrieved 22 July 2024 from http://rave.ohiolink.edu/etdc/view?acc_num=ucin1148308325
Kocabıyık, Y. (2014). Yeniden İşlevlendirme Kavramı ve Bu Kapsamda İTÜ Taşkışla Binasının İncelenmesi. Maltepe Üniversitesi, İstanbul.
Langston, C., Wong, F. K. W., Hui, E. C. M., & Shen, L.-Y. (2008). Strategic assessment of building adaptive reuse opportunities in Hong Kong. Building and Environment, 43(10), 1709–1718. Retrieved from https://doi.org/10.1016/j.buildenv.2007.10.017
Lee, K.-S., & Ham, B.-J. (2022). Machine Learning on Early Diagnosis of Depression. Psychiatry Investigation, 19(8), 597–605. Retrieved from https://doi.org/10.30773/pi.2022.0075
Lemos, C. B., & Donoso, M. D. (2023). Reduce, Reuse, Rethınk And Preserve: The Reuse Of Hıstorıcal Buıldıngs As A Strategy For Envıronmental Sustaınabılıty And Herıtage Apprecıatıon. Scientific Journal Of Applied Social And Clinical Science, 3(20), 2–9. Retrieved from https://doi.org/10.22533/at.ed.2163202314089
Li, Y., Zhao, L., Huang, J., & Law, A. (2021a). Research frameworks, methodologies, and assessment methods concerning the adaptive reuse of architectural heritage: a review. Built Heritage, 5(1), 6. Retrieved from https://doi.org/10.1186/s43238-021-00025-x
Li, Y., Zhao, L., Huang, J., & Law, A. (2021b). Research frameworks, methodologies, and assessment methods concerning the adaptive reuse of architectural heritage: a review. Built Heritage, 5(1), 6. Retrieved from https://doi.org/10.1186/s43238-021-00025-x
Mengüşoğlu, N., & Boyacıoğlu, E. (2013). Reuse Of Industrial Built Heritage For Residential Purposes In Manchester. METU Journal Of The Faculty Of Archıtecture, 30(01). Retrieved from https://doi.org/10.4305/METU.JFA.2013.1.7
Mitchell, T. M. (1997). Does Machine Learning Really Work? AI Magazine, 18(3), 11–11. Retrieved 8 May 2024 from https://doi.org/10.1609/AIMAG.V18I3.1303
Mohamed, N., & Alauddin, K. (2016). The Criteria For Decision Making In Adaptive Reuse Towards Sustainable Development. MATEC Web of Conferences, 66, 00092. Retrieved from https://doi.org/10.1051/matecconf/20166600092
Mondal, R., Do, M. D., Ahmed, N. U., Walke, D., Micheel, D., Broneske, D., … Heyer, R. (2023). Decision tree learning in Neo4j on homogeneous and unconnected graph nodes from biological and clinical datasets. BMC Medical Informatics and Decision Making, 22(S6), 347. Retrieved from https://doi.org/10.1186/s12911-023-02112-8
Noroozbabaee, L., Blanco, P. J., Safaei, S., & Nickerson, D. (2023). Reproducibility study of the modular and reusable model of epithelial transport in the proximal convoluted tubule. Physiome. Retrieved 5 December 2023 from https://doi.org/10.36903/PHYSIOME.23499258.V4
Oral Aydın, E. Ö., & Çömlekçioğlu Kartal, R. (2010). Kocaeli Seka I. Kağıt Fabrikası’nın Mimari Analizi Ve Yeniden Kullanım Önerileri. Türkiye Bilimler Akademisi Kültür Envanteri Dergisi, (8), 21–34. Retrieved from https://doi.org/10.22520/tubaked.2010.0002
Othman, A. A. E., & Elsaay, H. (2018). Adaptive reuse: an innovative approach for generating sustainable values for historic buildings in developing countries. Organization, Technology and Management in Construction: An International Journal, 10(1), 1704–1718. Retrieved from https://doi.org/10.2478/otmcj-2018-0002
Prihatmanti, R., & Susan, M. Y. (2017). Adaptive reuse of heritage building and the impact to the visual comfort: Assessed by the lighting quality. IPTEK Journal of Proceedings Series, 0(3). Retrieved from https://doi.org/10.12962/j23546026.y2017i3.2443
Ullah, U., Shah, S. M. A., & Nazir, H. (2022). Challenges and Opportunities for Revitalization of the Architectural Heritage of Saidu Sharif Swat. Annals of Human and Social Sciences, 3(III). Retrieved from https://doi.org/10.35484/ahss.2022(3-III)11
Vardopoulos, I., Tsilika, E., Sarantakou, E., Zorpas, A., Salvati, L., & Tsartas, P. (2021). An Integrated SWOT-PESTLE-AHP Model Assessing Sustainability in Adaptive Reuse Projects. Applied Sciences, 11(15), 7134. Retrieved from https://doi.org/10.3390/app11157134
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., … Vázquez-Baeza, Y. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods, 17(3), 261–272. Retrieved from https://doi.org/10.1038/s41592-019-0686-2
Yönder, V. M., Doğan, F., & Çavka, H. B. (2021). Deciphering and Forecasting Characteristics of Bodrum Houses Using Artificial Intelligence (AI) Approaches. In Blucher Design Proceedings (pp. 241–252). São Paulo: Editora Blucher. Retrieved from https://doi.org/10.5151/sigradi2021-146
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Ecological Perspective

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.